

### **COURSE UNIT DESCRIPTION**

Study Cycle: Doctoral Program

Course Unit: Computational Biology and Bioinformatics

Scientific Area Abbreviation: CB-BCM

Course Unit Code: 5573038

Year: 1st

**Duration:** One semester **Academic Year:** 2024–25

Remarks: Mandatory course unit

| Total hours | Contact hours         | Nr. Hours/week | ECTS |
|-------------|-----------------------|----------------|------|
| 112         | 9 T; 17 PL; 8 S; 4 OT | 1.73           | 4    |

L - Lecture; TP - Theoretical and Practical; Lab - Laboratory Practice; FC - Field Work; S - Seminar; I - Internship; Tut - Tutorial Guidance; O - Other

Responsible Lecturer: Pedro Cravo – 9 hours

Other Lecturers: Ana Abecasis – 14 hours; Victor Pimentel – 4 hours; João Pinto – 4 hours; Isabel Maurício – 4 hours;

Ricardo Parreira - 9 hours

## **Learning Objectives (LO)**

This course aims to provide students with the knowledge, skills, and competencies to use bioinformatics tools and computational applications:

- 1. To study DNA sequences, genes of interest, and genomes
- 2. To analyze the properties, structure, and function of proteins
- 3. To infer phylogenetic and evolutionary relationships between molecules or organisms
- 4. To study genetic variation and structure in human populations and infectious agents

#### **Course Content**

This course unit is organized into four thematic blocks:

# 1. Sequence and Genome Analysis

- a) Concepts of genome and genomic analysis
- b) Genome databases
- c) Sequencing and sequence alignment
- d) Genetic mapping
- e) In silico mutation detection and genotyping methods



#### 2. Protein Analysis

- a) Concepts of translation and protein structure
- b) Protein databases
- c) Protein structure prediction
- d) Protein function analysis
- e) Proteomics, transcriptomics, and metabolomics: concepts and applications

### 3. Phylogenetic Analysis

- a) Concepts of molecular evolution
- b) Phylogenetic reconstruction methods
- c) Testing evolutionary models
- d) Selective pressure testing
- e) Phylogeography

## 4. Computational Solutions for Population Genetics

- a) Concepts of population genetics
- b) Molecular markers for population studies
- c) Genotypic databases
- d) Bioinformatics tools for population genetic analysis

#### **Teaching Methodologies**

This course will employ the following methods:

- 1. Theoretical lectures (lecture-based method)
- 2. Theoretical-practical classes (lecture/demonstration method)
- 3. Practical classes (demonstration/active learning method)

#### **Assessment**

Student assessment will consist of a practical exam involving an exercise in which students must apply bioinformatics tools to solve a problem. Students will be graded on a scale of 0 to 20.

Course evaluation will be conducted using the standard IHMT student satisfaction survey.

### **Bibliography**

- Claverie J-M, Notredame C. 2007. Bioinformatics for Dummies, 2nd Ed. Wiley Publishing. 436 pages.
- Lemey P, Salemi M, Vandamme A-M. 2009. *The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing*, 2nd Ed. Cambridge University Press. 750 pages.
- Hartl DL, Clark AG. 2007. Principles of Population Genetics, 4th Ed. Sinauer Associates.