• Skip to primary navigation
  • Skip to main content
  • Skip to footer
  • Pessoal
    • Webmail
    • Área de Docentes
    • Área de Não-Docentes
  • Estudantes
    • Webmail
    • Moodle
    • NetP@
    • Biblioteca
    • Escola Doutoral
    • Serviços Académicos
    • Trabalhar no IHMT

IHMT

Instituto de Higiene e Medicina Tropical

  • O Instituto
    • Missão
    • História
    • Mensagem do Diretor
    • Órgãos de governo
    • Docentes e investigadores
    • Unidades de Ensino e de Investigação
  • Ensino
    • Doutoramentos
    • Mestrados
    • Cursos de Especialização
    • Formação transversal
    • Cursos de Curta Duração
    • Ensino à Distância
    • Apoio ao Desenvolvimento
    • Serviços académicos
  • Investigação
    • Centro GHTM
    • Unidade de Clínica Tropical
    • Unidade de Microbiologia Médica
    • Unidade de Parasitologia Médica
    • Unidade de Saúde Pública Global
    • Serviço de Interesse Comum
    • Biobanco
    • Centro Colaborador da OMS
    • Publicações
  • Serviços e gestão
    • Biblioteca
    • Sistema de Qualidade
    • Estatutos e regulamentos
    • Relatórios
    • Contratos públicos
    • Recursos humanos
      • Concursos e bolsas
      • Contratos
      • Avaliação e Desempenho
        • Processo Eleitoral da Comissão Paritária
      • Mobilidade
  • Doenças Tropicais
    • Consulta do Viajante
    • Glossário
    • Museu
    • Vídeos
    • MosquitoWeb
  • Comunidade
    • Cooperação e Desenvolvimento
    • Formação
    • Parcerias
  • Contactos
  • Português
  • English
Home / Publicações / The future of novel diagnostics in medical mycology

The future of novel diagnostics in medical mycology

  • Autores: Seixas J, Teles F
  • Ano de Publicação: 2014
  • Journal: Journal of Medical Microbiology
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/25418735

Several fungal diseases have become serious threats to human health and life, especially upon the advent of human immunodeficiency virus/AIDS epidemics and of other typical immunosuppressive conditions of modern life. Accordingly, the burden posed by these diseases and, concurrently, by intensive therapeutic regimens against these diseases has increased worldwide. Existing and available rapid tests for point-of-care diagnosis of important fungal diseases could enable the limitations of current laboratory methods for detection and identification of medically important fungi to be surpassed, both in low-income countries and for first-line diagnosis (screening) in richer countries. As with conventional diagnostic methods and devices, former immunodiagnostics have been challenged by molecular biology-based platforms, as a way to enhance the sensitivity and shorten the assay time, thus enabling early and more accurate diagnosis. Most of these tests have been developed in-house, without adequate validation and standardization. Another challenge has been the DNA extraction step, which is especially critical when dealing with fungi. In this paper, we have identified three major research trends in this field: (1) the application of newer biorecognition techniques, often applied in analytical chemistry; (2) the development of new materials with improved physico-chemical properties; and (3) novel bioanalytical platforms, allowing fully automated testing. Keeping up to date with the fast technological advances registered in this field, primarily at the proof-of-concept level, is essential for wise assessment of those that are likely to be more cost effective and, as already observed for bacterial and viral pathogens, may provide leverage to the current tepid developmental status of novel and improved diagnostics for medical mycology.

The future of novel diagnostics in medical mycology

  • Autores: Seixas J, Teles F
  • Ano de Publicação: 2014
  • Journal: Journal of Medical Microbiology
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/25418735

Several fungal diseases have become serious threats to human health and life, especially upon the advent of human immunodeficiency virus/AIDS epidemics and of other typical immunosuppressive conditions of modern life. Accordingly, the burden posed by these diseases and, concurrently, by intensive therapeutic regimens against these diseases has increased worldwide. Existing and available rapid tests for point-of-care diagnosis of important fungal diseases could enable the limitations of current laboratory methods for detection and identification of medically important fungi to be surpassed, both in low-income countries and for first-line diagnosis (screening) in richer countries. As with conventional diagnostic methods and devices, former immunodiagnostics have been challenged by molecular biology-based platforms, as a way to enhance the sensitivity and shorten the assay time, thus enabling early and more accurate diagnosis. Most of these tests have been developed in-house, without adequate validation and standardization. Another challenge has been the DNA extraction step, which is especially critical when dealing with fungi. In this paper, we have identified three major research trends in this field: (1) the application of newer biorecognition techniques, often applied in analytical chemistry; (2) the development of new materials with improved physico-chemical properties; and (3) novel bioanalytical platforms, allowing fully automated testing. Keeping up to date with the fast technological advances registered in this field, primarily at the proof-of-concept level, is essential for wise assessment of those that are likely to be more cost effective and, as already observed for bacterial and viral pathogens, may provide leverage to the current tepid developmental status of novel and improved diagnostics for medical mycology.

Footer

INSTITUTO DE HIGIENE E
MEDICINA TROPICAL
UNIVERSIDADE NOVA DE LISBOA
Rua da Junqueira, 100 1349-008 Lisboa
T +351 213 652 600
geral@ihmt.unl.pt

Consulta do Viajante e Medicina Tropical
T +351 213 652 630
T +351 213 652 690
T +351 91 182 37 48
T +351 91 182 44 67
medicina.viagens@ihmt.unl.pt

Ensino
Investigação
Medicina Tropical
Cooperação

Siga-nos

  • Facebook
  • LinkedIn
  • YouTube

Receber a “newsletter”

© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013