• Skip to primary navigation
  • Skip to main content
  • Skip to footer
  • Pessoal
    • Webmail
    • Área de Docentes
    • Área de Não-Docentes
  • Estudantes
    • Webmail
    • Moodle
    • NetP@
    • Biblioteca
    • Escola Doutoral
    • Serviços Académicos
    • Trabalhar no IHMT

IHMT

Instituto de Higiene e Medicina Tropical

  • O Instituto
    • Missão
    • História
    • Mensagem do Diretor
    • Órgãos de governo
    • Docentes e investigadores
    • Unidades de Ensino e de Investigação
    • Portal de Denúncias UNL
  • Ensino
    • Doutoramentos
    • Mestrados
    • Cursos de Especialização
    • Formação transversal
    • Cursos de Curta Duração
    • Ensino à Distância
    • Apoio ao Desenvolvimento
    • Serviços académicos
  • Investigação
    • Centro GHTM
    • Unidade de Clínica Tropical
    • Unidade de Microbiologia Médica
    • Unidade de Parasitologia Médica
    • Unidade de Saúde Pública Global
    • Serviço de Interesse Comum
    • Biobanco
    • Centro Colaborador da OMS
    • Publicações
  • Serviços e gestão
    • Biblioteca
    • Sistema de Qualidade
    • Estatutos e regulamentos
    • Plano de Atividades
    • Relatório de Atividades
    • Relatório de Gestão
    • Contratos públicos
    • Recursos humanos
      • Concursos e bolsas
      • Contratos
      • Avaliação e Desempenho
        • Processo Eleitoral da Comissão Paritária
      • Mobilidade
  • Doenças Tropicais
    • Consulta do Viajante
    • Glossário
    • Museu
    • Vídeos
    • MosquitoWeb
  • Comunidade
    • Cooperação e Desenvolvimento
    • Formação
    • Parcerias
  • Contactos
  • pt
    • pt
    • en
Home / Publicações / Analysis of HIV/AIDS DRG in Portugal: a Hierarchical Finite Mixture Model

Analysis of HIV/AIDS DRG in Portugal: a Hierarchical Finite Mixture Model

  • Autores: Andreozzi V, Dias SS, Martins MO
  • Ano de Publicação: 2013
  • Journal: The European Journal of Health Economics
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/22864565

Inpatient length of stay (LOS) is an important measure of hospital activity, but its empirical distribution is often positively skewed, representing a challenge for statistical analysis. Taking this feature into account, we seek to identify factors that are associated with HIV/AIDS through a hierarchical finite mixture model. A mixture of normal components is applied to adult HIV/AIDS diagnosis-related group data (DRG) from 2008. The model accounts for the demographic and clinical characteristics of the patients, as well the inherent correlation of patients clustered within hospitals. In the present research, a normal mixture distribution was fitted to the logarithm of LOS and it was found that a model with two-components had the best fit, resulting in two subgroups of LOS: a short-stay subgroup and a long-stay subgroup. Associated risk factors for both groups were identified as well as some statistical differences in the hospitals. Our findings provide important information for policy makers in terms of discharge planning and the efficient management of LOS. The presence of “atypical” hospitals also suggests that hospitals should not be viewed or treated as homogenous bodies.

Analysis of HIV/AIDS DRG in Portugal: a Hierarchical Finite Mixture Model

  • Autores: Andreozzi V, Dias SS, Martins MO
  • Ano de Publicação: 2013
  • Journal: The European Journal of Health Economics
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/22864565

Inpatient length of stay (LOS) is an important measure of hospital activity, but its empirical distribution is often positively skewed, representing a challenge for statistical analysis. Taking this feature into account, we seek to identify factors that are associated with HIV/AIDS through a hierarchical finite mixture model. A mixture of normal components is applied to adult HIV/AIDS diagnosis-related group data (DRG) from 2008. The model accounts for the demographic and clinical characteristics of the patients, as well the inherent correlation of patients clustered within hospitals. In the present research, a normal mixture distribution was fitted to the logarithm of LOS and it was found that a model with two-components had the best fit, resulting in two subgroups of LOS: a short-stay subgroup and a long-stay subgroup. Associated risk factors for both groups were identified as well as some statistical differences in the hospitals. Our findings provide important information for policy makers in terms of discharge planning and the efficient management of LOS. The presence of “atypical” hospitals also suggests that hospitals should not be viewed or treated as homogenous bodies.

Footer

INSTITUTO DE HIGIENE E
MEDICINA TROPICAL
UNIVERSIDADE NOVA DE LISBOA
Rua da Junqueira, 100 1349-008 Lisboa
T +351 213 652 600
geral@ihmt.unl.pt

Consulta do Viajante e Medicina Tropical
T +351 213 652 630
T +351 213 652 690
T +351 91 182 37 48
T +351 91 182 44 67
medicina.viagens@ihmt.unl.pt

  • Ensino
  • Investigação
  • Medicina Tropical
  • Cooperação
  • Portal de Denúncias UNL

Siga-nos

  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube

Receber a “newsletter”

© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013