• Skip to primary navigation
  • Skip to main content
  • Skip to footer
  • Pessoal
    • Webmail
    • Área de Docentes
    • Área de Não-Docentes
  • Estudantes
    • Webmail
    • Moodle
    • NetP@
    • Biblioteca
    • Escola Doutoral
    • Serviços Académicos
    • Trabalhar no IHMT

IHMT

Instituto de Higiene e Medicina Tropical

  • O Instituto
    • Missão
    • História
    • Mensagem do Diretor
    • Órgãos de governo
    • Docentes e investigadores
    • Unidades de Ensino e de Investigação
  • Ensino
    • Doutoramentos
    • Mestrados
    • Cursos de Especialização
    • Formação transversal
    • Cursos de Curta Duração
    • Ensino à Distância
    • Apoio ao Desenvolvimento
    • Serviços académicos
  • Investigação
    • Centro GHTM
    • Unidade de Clínica Tropical
    • Unidade de Microbiologia Médica
    • Unidade de Parasitologia Médica
    • Unidade de Saúde Pública Global
    • Serviço de Interesse Comum
    • Biobanco
    • Centro Colaborador da OMS
    • Publicações
  • Serviços e gestão
    • Biblioteca
    • Sistema de Qualidade
    • Estatutos e regulamentos
    • Relatórios
    • Contratos públicos
    • Recursos humanos
      • Concursos e bolsas
      • Contratos
      • Avaliação e Desempenho
        • Processo Eleitoral da Comissão Paritária
      • Mobilidade
  • Doenças Tropicais
    • Consulta do Viajante
    • Glossário
    • Museu
    • Vídeos
    • MosquitoWeb
  • Comunidade
    • Cooperação e Desenvolvimento
    • Formação
    • Parcerias
  • Contactos
  • Português
  • English
Home / Publicações / Anopheles atroparvus density modeling using MODIS NDVI in a former malarious area in Portugal.

Anopheles atroparvus density modeling using MODIS NDVI in a former malarious area in Portugal.

  • Autores: Almeida AP, Lopes P, Lourenço PM, Novo MT, Seixas J, Sousa CA
  • Ano de Publicação: 2011
  • Journal: Journal of Vector Ecology
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/?term=Anopheles+atroparvus+density+modeling+using+MODIS+NDVI+in+a+former+malarious+area+in+Portugal.

Malaria is dependent on environmental factors and considered as potentially re-emerging in temperate regions. Remote sensing data have been used successfully for monitoring environmental conditions that influence the patterns of such arthropod vector-borne diseases. Anopheles atroparvus density data were collected from 2002 to 2005, on a bimonthly basis, at three sites in a former malarial area in Southern Portugal. The development of the Remote Vector Model (RVM) was based upon two main variables: temperature and the Normalized Differential Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite. Temperature influences the mosquito life cycle and affects its intra-annual prevalence, and MODIS NDVI was used as a proxy for suitable habitat conditions. Mosquito data were used for calibration and validation of the model. For areas with high mosquito density, the model validation demonstrated a Pearson correlation of 0.68 (p<0.05) and a modelling efficiency/Nash-Sutcliffe of 0.44 representing the model’s ability to predict intra- and inter-annual vector density trends. RVM estimates the density of the former malarial vector An. atroparvus as a function of temperature and of MODIS NDVI. RVM is a satellite data-based assimilation algorithm that uses temperature fields to predict the intra- and inter-annual densities of this mosquito species using MODIS NDVI. RVM is a relevant tool for vector density estimation, contributing to the risk assessment of transmission of mosquito-borne diseases and can be part of the early warning system and contingency plans providing support to the decision making process of relevant authorities.

Anopheles atroparvus density modeling using MODIS NDVI in a former malarious area in Portugal.

  • Autores: Almeida AP, Lopes P, Lourenço PM, Novo MT, Seixas J, Sousa CA
  • Ano de Publicação: 2011
  • Journal: Journal of Vector Ecology
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/?term=Anopheles+atroparvus+density+modeling+using+MODIS+NDVI+in+a+former+malarious+area+in+Portugal.

Malaria is dependent on environmental factors and considered as potentially re-emerging in temperate regions. Remote sensing data have been used successfully for monitoring environmental conditions that influence the patterns of such arthropod vector-borne diseases. Anopheles atroparvus density data were collected from 2002 to 2005, on a bimonthly basis, at three sites in a former malarial area in Southern Portugal. The development of the Remote Vector Model (RVM) was based upon two main variables: temperature and the Normalized Differential Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite. Temperature influences the mosquito life cycle and affects its intra-annual prevalence, and MODIS NDVI was used as a proxy for suitable habitat conditions. Mosquito data were used for calibration and validation of the model. For areas with high mosquito density, the model validation demonstrated a Pearson correlation of 0.68 (p<0.05) and a modelling efficiency/Nash-Sutcliffe of 0.44 representing the model’s ability to predict intra- and inter-annual vector density trends. RVM estimates the density of the former malarial vector An. atroparvus as a function of temperature and of MODIS NDVI. RVM is a satellite data-based assimilation algorithm that uses temperature fields to predict the intra- and inter-annual densities of this mosquito species using MODIS NDVI. RVM is a relevant tool for vector density estimation, contributing to the risk assessment of transmission of mosquito-borne diseases and can be part of the early warning system and contingency plans providing support to the decision making process of relevant authorities.

Footer

INSTITUTO DE HIGIENE E
MEDICINA TROPICAL
UNIVERSIDADE NOVA DE LISBOA
Rua da Junqueira, 100 1349-008 Lisboa
T +351 213 652 600
geral@ihmt.unl.pt

Consulta do Viajante e Medicina Tropical
T +351 213 652 630
T +351 213 652 690
T +351 91 182 37 48
T +351 91 182 44 67
medicina.viagens@ihmt.unl.pt

Ensino
Investigação
Medicina Tropical
Cooperação

Siga-nos

  • Facebook
  • LinkedIn
  • YouTube

Receber a “newsletter”

© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013