• Skip to primary navigation
  • Skip to main content
  • Skip to footer
  • Biblioteca
  • Museu
  • Pessoal
    • Webmail
    • Área de Docentes
    • Área de Não-Docentes
  • Estudantes
    • Webmail
    • Moodle
    • NetP@
    • Escola Doutoral
    • Serviços Académicos
    • Trabalhar no IHMT
    • Programa Mentoria à Mesa – 1ª Edição

IHMT

Instituto de Higiene e Medicina Tropical

  • O Instituto
    • Missão
    • Mensagem do Diretor
    • Órgãos de governo
    • Docentes e investigadores
    • Portal de Denúncias UNL
  • Ensino
    • Mestrados
    • Doutoramentos
    • Cursos de Especialização
    • Formação transversal
    • Cursos de Curta Duração
    • Ensino à Distância
    • Apoio ao Desenvolvimento
    • Serviços académicos
    • NOVA Open Academy
    • Programa Mentoria à Mesa – 1ª Edição
  • Investigação
    • Centro GHTM
    • Unidades de Ensino e de Investigação (UEI)
      • Unidade de Clínica Tropical
      • Unidade de Microbiologia Médica
      • Unidade de Parasitologia Médica
      • Unidade de Saúde Pública Global
      • Serviço de Apoio à Ciência e Comunidade
    • Biobanco
    • BLOODless
    • Centro Colaborador OMS
    • Publicações
  • Serviços e gestão
    • Biblioteca
    • Sistema de Qualidade
    • Estatutos e regulamentos
    • Plano de Atividades
    • Relatório de Atividades
    • Relatório de Gestão
    • Contratos públicos
    • Recursos humanos
      • Concursos e bolsas
        • Concursos – Docentes e Investigadores
        • Concursos – Não Docentes e Não Investigadores
        • Bolsas de Investigação
      • Contratos
      • Avaliação de Desempenho
        • Ciclo Avaliativo
          • Biénio 2021-2022
          • Biénio 2023-2024
        • Conselho Coordenador de Avaliação
        • Comissão Paritária
      • Mobilidade
      • Listas Nominativas
  • Doenças Tropicais
    • Consulta do Viajante
    • Dossiês Informativos
    • Glossário
    • Museu
    • Vídeos
    • MosquitoWeb
  • Comunidade
    • Cooperação e Desenvolvimento
    • Formação
    • Parcerias
  • Contactos
  • Candidaturas
  • pt
    • pt
    • en
Home / Publicações / Development of mathematical models for the analysis of hepatitis delta virus viral dynamics

Development of mathematical models for the analysis of hepatitis delta virus viral dynamics

  • Autores: Cunha C, de Sousa BC
  • Ano de Publicação: 2010
  • Journal: PLoS One
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/20862328

BACKGROUND:
Mathematical models have shown to be extremely helpful in understanding the dynamics of different virus diseases, including hepatitis B. Hepatitis D virus (HDV) is a satellite virus of the hepatitis B virus (HBV). In the liver, production of new HDV virions depends on the presence of HBV. There are two ways in which HDV can occur in an individual: co-infection and super-infection. Co-infection occurs when an individual is simultaneously infected by HBV and HDV, while super-infection occurs in persons with an existing chronic HBV infection.

METHODOLOGY/PRINCIPAL FINDINGS:
In this work a mathematical model based on differential equations is proposed for the viral dynamics of the hepatitis D virus (HDV) across different scenarios. This model takes into consideration the knowledge of the biology of the virus and its interaction with the host. In this work we will present the results of a simulation study where two scenarios were considered, co-infection and super-infection, together with different antiviral therapies. Although, in general the predicted course of HDV infection is similar to that observed for HBV, we observe a faster increase in the number of HBV infected cells and viral load. In most tested scenarios, the number of HDV infected cells and viral load values remain below corresponding predicted values for HBV.

CONCLUSIONS/SIGNIFICANCE:
The simulation study shows that, under the most commonly used and generally accepted therapy approaches for HDV infection, such as lamivudine (LMV) or ribavirine, peggylated alpha-interferon (IFN) or a combination of both, LMV monotherapy and combination therapy of LMV and IFN were predicted to more effectively reduce the HBV and HDV viral loads in the case of super-infection scenarios when compared with the co-infection. In contrast, IFN monotherapy was found to reduce the HDV viral load more efficiently in the case of super-infection while the effect on the HBV viral load was more pronounced during co-infection. The results suggest that there is a need for development of high efficacy therapeutic approaches towards the specific inhibition of HDV replication. These approaches may additionally be directed to the reduction of the half-life of infected cells and life-span of newly produced circulating virions.

Development of mathematical models for the analysis of hepatitis delta virus viral dynamics

  • Autores: Cunha C, de Sousa BC
  • Ano de Publicação: 2010
  • Journal: PLoS One
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/20862328

BACKGROUND:
Mathematical models have shown to be extremely helpful in understanding the dynamics of different virus diseases, including hepatitis B. Hepatitis D virus (HDV) is a satellite virus of the hepatitis B virus (HBV). In the liver, production of new HDV virions depends on the presence of HBV. There are two ways in which HDV can occur in an individual: co-infection and super-infection. Co-infection occurs when an individual is simultaneously infected by HBV and HDV, while super-infection occurs in persons with an existing chronic HBV infection.

METHODOLOGY/PRINCIPAL FINDINGS:
In this work a mathematical model based on differential equations is proposed for the viral dynamics of the hepatitis D virus (HDV) across different scenarios. This model takes into consideration the knowledge of the biology of the virus and its interaction with the host. In this work we will present the results of a simulation study where two scenarios were considered, co-infection and super-infection, together with different antiviral therapies. Although, in general the predicted course of HDV infection is similar to that observed for HBV, we observe a faster increase in the number of HBV infected cells and viral load. In most tested scenarios, the number of HDV infected cells and viral load values remain below corresponding predicted values for HBV.

CONCLUSIONS/SIGNIFICANCE:
The simulation study shows that, under the most commonly used and generally accepted therapy approaches for HDV infection, such as lamivudine (LMV) or ribavirine, peggylated alpha-interferon (IFN) or a combination of both, LMV monotherapy and combination therapy of LMV and IFN were predicted to more effectively reduce the HBV and HDV viral loads in the case of super-infection scenarios when compared with the co-infection. In contrast, IFN monotherapy was found to reduce the HDV viral load more efficiently in the case of super-infection while the effect on the HBV viral load was more pronounced during co-infection. The results suggest that there is a need for development of high efficacy therapeutic approaches towards the specific inhibition of HDV replication. These approaches may additionally be directed to the reduction of the half-life of infected cells and life-span of newly produced circulating virions.

Footer

INSTITUTO DE HIGIENE E
MEDICINA TROPICAL
UNIVERSIDADE NOVA DE LISBOA
Rua da Junqueira, 100 1349-008 Lisboa
T +351 213 652 600
geral@ihmt.unl.pt

Consulta do Viajante e Medicina Tropical
T +351 213 652 630
T +351 213 652 690
T +351 91 182 37 48
T +351 91 182 44 67
medicina.viagens@ihmt.unl.pt

  • Ensino
  • Investigação
  • Medicina Tropical
  • Cooperação
  • Portal de Denúncias UNL

NOVA University of Lisbon Logo

Siga-nos

  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube

Receber a “newsletter”

© Copyright 2025 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    UIDB/04413/2020
    UIDP/04413/2020

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok