• Skip to primary navigation
  • Skip to main content
  • Skip to footer
  • Biblioteca
  • Museu
  • Pessoal
    • Webmail
    • Área de Docentes
    • Área de Não-Docentes
  • Estudantes
    • Webmail
    • Moodle
    • NetP@
    • Escola Doutoral
    • Serviços Académicos
    • Trabalhar no IHMT

IHMT

Instituto de Higiene e Medicina Tropical

  • O Instituto
    • Missão
    • Mensagem do Diretor
    • Órgãos de governo
    • Docentes e investigadores
    • Portal de Denúncias UNL
  • Ensino
    • Mestrados
    • Doutoramentos
    • Cursos de Especialização
    • Formação transversal
    • Cursos de Curta Duração
    • Ensino à Distância
    • Apoio ao Desenvolvimento
    • Serviços académicos
    • NOVA Open Academy
  • Investigação
    • Centro GHTM
    • Unidades de Ensino e de Investigação (UEI)
      • Unidade de Clínica Tropical
      • Unidade de Microbiologia Médica
      • Unidade de Parasitologia Médica
      • Unidade de Saúde Pública Global
      • Serviço de Apoio à Ciência e Comunidade
    • Biobanco
    • BLOODless
    • Centro Colaborador OMS
    • Publicações
  • Serviços e gestão
    • Biblioteca
    • Sistema de Qualidade
    • Estatutos e regulamentos
    • Plano de Atividades
    • Relatório de Atividades
    • Relatório de Gestão
    • Contratos públicos
    • Recursos humanos
      • Concursos e bolsas
        • Concursos – Docentes e Investigadores
        • Concursos – Não Docentes e Não Investigadores
        • Bolsas de Investigação
      • Contratos
      • Avaliação de Desempenho
        • Ciclo Avaliativo
          • Biénio 2021-2022
          • Biénio 2023-2024
        • Conselho Coordenador de Avaliação
        • Comissão Paritária
      • Mobilidade
      • Listas Nominativas
  • Doenças Tropicais
    • Consulta do Viajante
    • Dossiês Informativos
    • Glossário
    • Museu
    • Vídeos
    • MosquitoWeb
  • Comunidade
    • Cooperação e Desenvolvimento
    • Formação
    • Parcerias
  • Contactos
  • Candidaturas
  • pt
    • pt
    • en
Home / Publicações / Therapeutic Potential of Caspofungin Combined with Trimethoprim-Sul- famethoxazole for Pneumocystis Pneumonia: A Pilot Study in Mice

Therapeutic Potential of Caspofungin Combined with Trimethoprim-Sul- famethoxazole for Pneumocystis Pneumonia: A Pilot Study in Mice

  • Autores: Antunes F, Cardoso F, Cushion MT, de Sousa B, Esteves F, Lobo ML, Matos O
  • Ano de Publicação: 2013
  • Journal: PLoS One
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/23940606

Pneumocystis pneumonia (PcP) is a major cause of mortality and morbidity in immunocompromised patients. There are limited alternative therapeutic choices to trimethoprim-sulfamethoxazole (TMP-SMX) which is the standard first line therapy/prophylaxis for PcP.

The efficacy of low doses of caspofungin and caspofungin in association with TMP-SMX standard-prophylactic dose was evaluated in an experimental model of Pneumocystis. Susceptibility of Pneumocystis spp. to low doses of caspofungin and caspofungin/TMP-SMX was evaluated in Balb/c immunosuppressed mice, infected intranasally with P. murina. Caspofungin was administered once daily at 0.1 mg/kg, 0.05 mg/kg, and 0.001 mg/kg and TMP-SMX was administered by oral gavage (12.25 mg/62.5 mg/day), for 21 days. Efficacy was calculated based on the reduction in organism burden determined through quantitative fluorescent-based real-time PCR (qPCR). Serum β-1,3-D-glucan was measured as an additional marker of infection.

The present data showed that caspofungin demonstrated anti-Pneumomocystis effect. However, the doses administrated were too low to achieve Pneumocystis eradication, which suggests that echinocandin treatment should not be administrated as mono-therapy. After 21 days of treatment, P. murina was not detected in the lungs of mice with either TMP-SMX or caspofungin/TMP-SMX. The results showed that, even at the lowest concentrations tested, the efficacy of caspofungin in association with TMP-SMX was higher than the efficacy of either drug used alone. The administration of caspofungin/TMP-SMX was at least 1.4 times more effective against P. murina infection than TMP-SMX used alone.

The most promising result was achieved with the combination of caspofungin 0.05 mg/kg/day with TMP-SMX 12.5 mg-62.5 mg/day, which reduced the parasite burden to undetectable levels immediately at the 14(th) day of treatment, showing a highly marked anti-Pneumomocystis effect. These data suggest that the administration of low doses of caspofungin in combination with low doses of TMP-SMX may provide an improved treatment protocol for Pneumocystis infection clearance.

Therapeutic Potential of Caspofungin Combined with Trimethoprim-Sul- famethoxazole for Pneumocystis Pneumonia: A Pilot Study in Mice

  • Autores: Antunes F, Cardoso F, Cushion MT, de Sousa B, Esteves F, Lobo ML, Matos O
  • Ano de Publicação: 2013
  • Journal: PLoS One
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/23940606

Pneumocystis pneumonia (PcP) is a major cause of mortality and morbidity in immunocompromised patients. There are limited alternative therapeutic choices to trimethoprim-sulfamethoxazole (TMP-SMX) which is the standard first line therapy/prophylaxis for PcP.

The efficacy of low doses of caspofungin and caspofungin in association with TMP-SMX standard-prophylactic dose was evaluated in an experimental model of Pneumocystis. Susceptibility of Pneumocystis spp. to low doses of caspofungin and caspofungin/TMP-SMX was evaluated in Balb/c immunosuppressed mice, infected intranasally with P. murina. Caspofungin was administered once daily at 0.1 mg/kg, 0.05 mg/kg, and 0.001 mg/kg and TMP-SMX was administered by oral gavage (12.25 mg/62.5 mg/day), for 21 days. Efficacy was calculated based on the reduction in organism burden determined through quantitative fluorescent-based real-time PCR (qPCR). Serum β-1,3-D-glucan was measured as an additional marker of infection.

The present data showed that caspofungin demonstrated anti-Pneumomocystis effect. However, the doses administrated were too low to achieve Pneumocystis eradication, which suggests that echinocandin treatment should not be administrated as mono-therapy. After 21 days of treatment, P. murina was not detected in the lungs of mice with either TMP-SMX or caspofungin/TMP-SMX. The results showed that, even at the lowest concentrations tested, the efficacy of caspofungin in association with TMP-SMX was higher than the efficacy of either drug used alone. The administration of caspofungin/TMP-SMX was at least 1.4 times more effective against P. murina infection than TMP-SMX used alone.

The most promising result was achieved with the combination of caspofungin 0.05 mg/kg/day with TMP-SMX 12.5 mg-62.5 mg/day, which reduced the parasite burden to undetectable levels immediately at the 14(th) day of treatment, showing a highly marked anti-Pneumomocystis effect. These data suggest that the administration of low doses of caspofungin in combination with low doses of TMP-SMX may provide an improved treatment protocol for Pneumocystis infection clearance.

Footer

INSTITUTO DE HIGIENE E
MEDICINA TROPICAL
UNIVERSIDADE NOVA DE LISBOA
Rua da Junqueira, 100 1349-008 Lisboa
T +351 213 652 600
geral@ihmt.unl.pt

Consulta do Viajante e Medicina Tropical
T +351 213 652 630
T +351 213 652 690
T +351 91 182 37 48
T +351 91 182 44 67
medicina.viagens@ihmt.unl.pt

  • Ensino
  • Investigação
  • Medicina Tropical
  • Cooperação
  • Portal de Denúncias UNL

NOVA University of Lisbon Logo

Siga-nos

  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube

Receber a “newsletter”

© Copyright 2025 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    UIDB/04413/2020
    UIDP/04413/2020

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok