• Skip to primary navigation
  • Skip to main content
  • Skip to footer
  • Pessoal
    • Webmail
    • Área de Docentes
    • Área de Não-Docentes
  • Estudantes
    • Webmail
    • Moodle
    • NetP@
    • Biblioteca
    • Escola Doutoral
    • Serviços Académicos
    • Trabalhar no IHMT

IHMT

Instituto de Higiene e Medicina Tropical

  • O Instituto
    • Missão
    • História
    • Mensagem do Diretor
    • Órgãos de governo
    • Docentes e investigadores
    • Unidades de Ensino e de Investigação
    • Portal de Denúncias UNL
  • Ensino
    • Doutoramentos
    • Mestrados
    • Cursos de Especialização
    • Formação transversal
    • Cursos de Curta Duração
    • Ensino à Distância
    • Apoio ao Desenvolvimento
    • Serviços académicos
  • Investigação
    • Centro GHTM
    • Unidade de Clínica Tropical
    • Unidade de Microbiologia Médica
    • Unidade de Parasitologia Médica
    • Unidade de Saúde Pública Global
    • Serviço de Interesse Comum
    • Biobanco
    • Centro Colaborador da OMS
    • Publicações
  • Serviços e gestão
    • Biblioteca
    • Sistema de Qualidade
    • Estatutos e regulamentos
    • Relatório de Atividades
    • Relatório de Gestão
    • Contratos públicos
    • Recursos humanos
      • Concursos e bolsas
      • Contratos
      • Avaliação e Desempenho
        • Processo Eleitoral da Comissão Paritária
      • Mobilidade
  • Doenças Tropicais
    • Consulta do Viajante
    • Glossário
    • Museu
    • Vídeos
    • MosquitoWeb
  • Comunidade
    • Cooperação e Desenvolvimento
    • Formação
    • Parcerias
  • Contactos
  • Português
  • English
Home / Publicações / Sample size for estimating a binomial proportion: comparison of different methods.

Sample size for estimating a binomial proportion: comparison of different methods.

  • Autores: Gonçalves L, Pascoal C., Pires A., Rosario de Oliveira M.
  • Ano de Publicação: 2012
  • Journal: Journal of Applied Statistics
  • Link: https://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=7&SID=T1zdDDEYC1eBxhDSCne&page=1&doc=2

The poor performance of the Wald method for constructing confidence intervals (CIs) for a binomial proportion has been demonstrated in a vast literature. The related problem of sample size determination needs to be updated and comparative studies are essential to understanding the performance of alternative methods. In this paper, the sample size is obtained for the Clopper-Pearson, Bayesian (Uniform and Jeffreys priors), Wilson, Agresti-Coull, Anscombe, and Wald methods. Two two-step procedures are used: one based on the expected length (EL) of the CI and another one on its first-order approximation. In the first step, all possible solutions that satisfy the optimal criterion are obtained. In the second step, a single solution is proposed according to a new criterion (e.g. highest coverage probability (CP)). In practice, it is expected a sample size reduction, therefore, we explore the behavior of the methods admitting 30% and 50% of losses. For all the methods, the ELs are inflated, as expected, but the coverage probabilities remain close to the original target (with few exceptions). It is not easy to suggest a method that is optimal throughout the range (0, 1) for p. Depending on whether the goal is to achieve CP approximately or above the nominal level different recommendations are made.

Sample size for estimating a binomial proportion: comparison of different methods.

  • Autores: Gonçalves L, Pascoal C., Pires A., Rosario de Oliveira M.
  • Ano de Publicação: 2012
  • Journal: Journal of Applied Statistics
  • Link: https://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=7&SID=T1zdDDEYC1eBxhDSCne&page=1&doc=2

The poor performance of the Wald method for constructing confidence intervals (CIs) for a binomial proportion has been demonstrated in a vast literature. The related problem of sample size determination needs to be updated and comparative studies are essential to understanding the performance of alternative methods. In this paper, the sample size is obtained for the Clopper-Pearson, Bayesian (Uniform and Jeffreys priors), Wilson, Agresti-Coull, Anscombe, and Wald methods. Two two-step procedures are used: one based on the expected length (EL) of the CI and another one on its first-order approximation. In the first step, all possible solutions that satisfy the optimal criterion are obtained. In the second step, a single solution is proposed according to a new criterion (e.g. highest coverage probability (CP)). In practice, it is expected a sample size reduction, therefore, we explore the behavior of the methods admitting 30% and 50% of losses. For all the methods, the ELs are inflated, as expected, but the coverage probabilities remain close to the original target (with few exceptions). It is not easy to suggest a method that is optimal throughout the range (0, 1) for p. Depending on whether the goal is to achieve CP approximately or above the nominal level different recommendations are made.

Footer

INSTITUTO DE HIGIENE E
MEDICINA TROPICAL
UNIVERSIDADE NOVA DE LISBOA
Rua da Junqueira, 100 1349-008 Lisboa
T +351 213 652 600
geral@ihmt.unl.pt

Consulta do Viajante e Medicina Tropical
T +351 213 652 630
T +351 213 652 690
T +351 91 182 37 48
T +351 91 182 44 67
medicina.viagens@ihmt.unl.pt

  • Ensino
  • Investigação
  • Medicina Tropical
  • Cooperação
  • Portal de Denúncias UNL

Siga-nos

  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube

Receber a “newsletter”

© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013