• Skip to primary navigation
  • Skip to main content
  • Skip to footer
  • Biblioteca
  • Museu
  • Pessoal
    • Webmail
    • Área de Docentes
    • Área de Não-Docentes
  • Estudantes
    • Webmail
    • Moodle
    • NetP@
    • Escola Doutoral
    • Serviços Académicos
    • Trabalhar no IHMT

IHMT

Instituto de Higiene e Medicina Tropical

  • O Instituto
    • Missão
    • Mensagem do Diretor
    • Órgãos de governo
    • Docentes e investigadores
    • Portal de Denúncias UNL
  • Ensino
    • Mestrados
    • Doutoramentos
    • Cursos de Especialização
    • Formação transversal
    • Cursos de Curta Duração
    • Ensino à Distância
    • Apoio ao Desenvolvimento
    • Serviços académicos
    • NOVA Open Academy
  • Investigação
    • Centro GHTM
    • Unidades de Ensino e de Investigação (UEI)
      • Unidade de Clínica Tropical
      • Unidade de Microbiologia Médica
      • Unidade de Parasitologia Médica
      • Unidade de Saúde Pública Global
      • Serviço de Apoio à Ciência e Comunidade
    • Biobanco
    • BLOODless
    • Centro Colaborador OMS
    • Publicações
  • Serviços e gestão
    • Biblioteca
    • Sistema de Qualidade
    • Estatutos e regulamentos
    • Plano de Atividades
    • Relatório de Atividades
    • Relatório de Gestão
    • Contratos públicos
    • Recursos humanos
      • Concursos e bolsas
        • Concursos – Docentes e Investigadores
        • Concursos – Não Docentes e Não Investigadores
        • Bolsas de Investigação
      • Contratos
      • Avaliação de Desempenho
        • Ciclo Avaliativo
          • Biénio 2021-2022
          • Biénio 2023-2024
        • Conselho Coordenador de Avaliação
        • Comissão Paritária
      • Mobilidade
      • Listas Nominativas
  • Doenças Tropicais
    • Consulta do Viajante
    • Dossiês Informativos
    • Glossário
    • Museu
    • Vídeos
    • MosquitoWeb
  • Comunidade
    • Cooperação e Desenvolvimento
    • Formação
    • Parcerias
  • Contactos
  • Candidaturas
  • pt
    • pt
    • en
Home / Publicações / Gene flow-dependent genomic divergence between Anopheles gambiae M and S forms.

Gene flow-dependent genomic divergence between Anopheles gambiae M and S forms.

  • Autores: Donnelly MJ, Pinto J, Steen K, Weetman D, Wilding CS
  • Ano de Publicação: 2011
  • Journal: Molecular Biology and Evolution
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/?term=Gene+flow-dependent+genomic+divergence+between+Anopheles+gambiae+M+and+S+forms

Anopheles gambiae sensu stricto exists as two often-sympatric races termed the M and S molecular forms, characterized by fixed differences at an X-linked marker. Extreme divergence between M and S forms at pericentromeric “genomic islands” suggested that selection on variants therein could be driving interform divergence in the presence of ongoing gene flow, but recent work has detected much more widespread genomic differentiation. Whether such genomic islands are important in reproductive isolation or represent ancestral differentiation preserved by low recombination is currently unclear. A critical test of these competing hypotheses could be provided by comparing genomic divergence when rates of recent introgression vary. We genotyped 871 single nucleotide polymorphisms (SNPs) in A. gambiae sensu stricto from locations of M and S sympatry and allopatry, encompassing the full range of observed hybridization rates (0-25%). M and S forms were readily partitioned based on genomewide SNP variation in spite of evidence for ongoing introgression that qualitatively reflects hybridization rates. Yet both the level and the heterogeneity of genomic divergence varied markedly in line with levels of introgression. A few genomic regions of differentiation between M and S were common to each sampling location, the most pronounced being two centromere-proximal speciation islands identified previously but with at least one additional region outside of areas expected to exhibit reduced recombination. Our results demonstrate that extreme divergence at genomic islands does not simply represent segregating ancestral polymorphism in regions of low recombination and can be resilient to substantial gene flow. This highlights the potential for islands comprising a relatively small fraction of the genome to play an important role in early-stage speciation when reproductive isolation is limited.

Gene flow-dependent genomic divergence between Anopheles gambiae M and S forms.

  • Autores: Donnelly MJ, Pinto J, Steen K, Weetman D, Wilding CS
  • Ano de Publicação: 2011
  • Journal: Molecular Biology and Evolution
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/?term=Gene+flow-dependent+genomic+divergence+between+Anopheles+gambiae+M+and+S+forms

Anopheles gambiae sensu stricto exists as two often-sympatric races termed the M and S molecular forms, characterized by fixed differences at an X-linked marker. Extreme divergence between M and S forms at pericentromeric “genomic islands” suggested that selection on variants therein could be driving interform divergence in the presence of ongoing gene flow, but recent work has detected much more widespread genomic differentiation. Whether such genomic islands are important in reproductive isolation or represent ancestral differentiation preserved by low recombination is currently unclear. A critical test of these competing hypotheses could be provided by comparing genomic divergence when rates of recent introgression vary. We genotyped 871 single nucleotide polymorphisms (SNPs) in A. gambiae sensu stricto from locations of M and S sympatry and allopatry, encompassing the full range of observed hybridization rates (0-25%). M and S forms were readily partitioned based on genomewide SNP variation in spite of evidence for ongoing introgression that qualitatively reflects hybridization rates. Yet both the level and the heterogeneity of genomic divergence varied markedly in line with levels of introgression. A few genomic regions of differentiation between M and S were common to each sampling location, the most pronounced being two centromere-proximal speciation islands identified previously but with at least one additional region outside of areas expected to exhibit reduced recombination. Our results demonstrate that extreme divergence at genomic islands does not simply represent segregating ancestral polymorphism in regions of low recombination and can be resilient to substantial gene flow. This highlights the potential for islands comprising a relatively small fraction of the genome to play an important role in early-stage speciation when reproductive isolation is limited.

Footer

INSTITUTO DE HIGIENE E
MEDICINA TROPICAL
UNIVERSIDADE NOVA DE LISBOA
Rua da Junqueira, 100 1349-008 Lisboa
T +351 213 652 600
geral@ihmt.unl.pt

Consulta do Viajante e Medicina Tropical
T +351 213 652 630
T +351 213 652 690
T +351 91 182 37 48
T +351 91 182 44 67
medicina.viagens@ihmt.unl.pt

  • Ensino
  • Investigação
  • Medicina Tropical
  • Cooperação
  • Portal de Denúncias UNL

NOVA University of Lisbon Logo

Siga-nos

  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube

Receber a “newsletter”

© Copyright 2025 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    UIDB/04413/2020
    UIDP/04413/2020

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok