• Skip to primary navigation
  • Skip to main content
  • Skip to footer
  • Pessoal
    • Webmail
    • Área de Docentes
    • Área de Não-Docentes
  • Estudantes
    • Webmail
    • Moodle
    • NetP@
    • Biblioteca
    • Escola Doutoral
    • Serviços Académicos
    • Trabalhar no IHMT

IHMT

Instituto de Higiene e Medicina Tropical

  • O Instituto
    • Missão
    • História
    • Mensagem do Diretor
    • Órgãos de governo
    • Docentes e investigadores
    • Unidades de Ensino e de Investigação
  • Ensino
    • Doutoramentos
    • Mestrados
    • Cursos de Especialização
    • Formação transversal
    • Cursos de Curta Duração
    • Ensino à Distância
    • Apoio ao Desenvolvimento
    • Serviços académicos
  • Investigação
    • Centro GHTM
    • Unidade de Clínica Tropical
    • Unidade de Microbiologia Médica
    • Unidade de Parasitologia Médica
    • Unidade de Saúde Pública Global
    • Serviço de Interesse Comum
    • Biobanco
    • Centro Colaborador da OMS
    • Publicações
  • Serviços e gestão
    • Biblioteca
    • Sistema de Qualidade
    • Estatutos e regulamentos
    • Relatórios
    • Contratos públicos
    • Recursos humanos
      • Concursos e bolsas
      • Contratos
      • Avaliação e Desempenho
        • Processo Eleitoral da Comissão Paritária
      • Mobilidade
  • Doenças Tropicais
    • Consulta do Viajante
    • Glossário
    • Museu
    • Vídeos
    • MosquitoWeb
  • Comunidade
    • Cooperação e Desenvolvimento
    • Formação
    • Parcerias
  • Contactos
  • Português
  • English
Home / Publicações / Gonçalves L, Subtil A, de Oliveira MR, do Rosário V, Lee PW, Shaio MF

Gonçalves L, Subtil A, de Oliveira MR, do Rosário V, Lee PW, Shaio MF

  • Autores: de Oliveira MR, Do Rosário V, Gonçalves L, Lee PW, Shaio MF, Subtil A
  • Ano de Publicação: 2012
  • Journal: PLoS One
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/22844405

AIMS:
The main focus of this study is to illustrate the importance of the statistical analysis in the evaluation of the accuracy of malaria diagnostic tests, without admitting a reference test, exploring a dataset (n=3317) collected in São Tomé and Príncipe.

METHODS:
Bayesian Latent Class Models (without and with constraints) are used to estimate the malaria infection prevalence, together with sensitivities, specificities, and predictive values of three diagnostic tests (RDT, Microscopy and PCR), in four subpopulations simultaneously based on a stratified analysis by age groups (< 5, ≥ 5 years old) and fever status (febrile, afebrile).

RESULTS:
In the afebrile individuals with at least five years old, the posterior mean of the malaria infection prevalence is 3.2% with a highest posterior density interval of [2.3-4.1]. The other three subpopulations (febrile ≥ 5 years, afebrile or febrile children less than 5 years) present a higher prevalence around 10.3% [8.8-11.7]. In afebrile children under-five years old, the sensitivity of microscopy is 50.5% [37.7-63.2]. In children under-five, the estimated sensitivities/specificities of RDT are 95.4% [90.3-99.5]/93.8% [91.6-96.0]–afebrile–and 94.1% [87.5-99.4]/97.5% [95.5-99.3]–febrile. In individuals with at least five years old are 96.0% [91.5-99.7]/98.7% [98.1-99.2]–afebrile–and 97.9% [95.3-99.8]/97.7% [96.6-98.6]–febrile. The PCR yields the most reliable results in four subpopulations.

CONCLUSIONS:
The utility of this RDT in the field seems to be relevant. However, in all subpopulations, data provide enough evidence to suggest caution with the positive predictive values of the RDT. Microscopy has poor sensitivity compared to the other tests, particularly, in the afebrile children less than 5 years. This type of findings reveals the danger of statistical analysis based on microscopy as a reference test. Bayesian Latent Class Models provide a powerful tool to evaluate malaria diagnostic tests, taking into account different groups of interest.

Gonçalves L, Subtil A, de Oliveira MR, do Rosário V, Lee PW, Shaio MF

  • Autores: de Oliveira MR, Do Rosário V, Gonçalves L, Lee PW, Shaio MF, Subtil A
  • Ano de Publicação: 2012
  • Journal: PLoS One
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/22844405

AIMS:
The main focus of this study is to illustrate the importance of the statistical analysis in the evaluation of the accuracy of malaria diagnostic tests, without admitting a reference test, exploring a dataset (n=3317) collected in São Tomé and Príncipe.

METHODS:
Bayesian Latent Class Models (without and with constraints) are used to estimate the malaria infection prevalence, together with sensitivities, specificities, and predictive values of three diagnostic tests (RDT, Microscopy and PCR), in four subpopulations simultaneously based on a stratified analysis by age groups (< 5, ≥ 5 years old) and fever status (febrile, afebrile).

RESULTS:
In the afebrile individuals with at least five years old, the posterior mean of the malaria infection prevalence is 3.2% with a highest posterior density interval of [2.3-4.1]. The other three subpopulations (febrile ≥ 5 years, afebrile or febrile children less than 5 years) present a higher prevalence around 10.3% [8.8-11.7]. In afebrile children under-five years old, the sensitivity of microscopy is 50.5% [37.7-63.2]. In children under-five, the estimated sensitivities/specificities of RDT are 95.4% [90.3-99.5]/93.8% [91.6-96.0]–afebrile–and 94.1% [87.5-99.4]/97.5% [95.5-99.3]–febrile. In individuals with at least five years old are 96.0% [91.5-99.7]/98.7% [98.1-99.2]–afebrile–and 97.9% [95.3-99.8]/97.7% [96.6-98.6]–febrile. The PCR yields the most reliable results in four subpopulations.

CONCLUSIONS:
The utility of this RDT in the field seems to be relevant. However, in all subpopulations, data provide enough evidence to suggest caution with the positive predictive values of the RDT. Microscopy has poor sensitivity compared to the other tests, particularly, in the afebrile children less than 5 years. This type of findings reveals the danger of statistical analysis based on microscopy as a reference test. Bayesian Latent Class Models provide a powerful tool to evaluate malaria diagnostic tests, taking into account different groups of interest.

Footer

INSTITUTO DE HIGIENE E
MEDICINA TROPICAL
UNIVERSIDADE NOVA DE LISBOA
Rua da Junqueira, 100 1349-008 Lisboa
T +351 213 652 600
geral@ihmt.unl.pt

Consulta do Viajante e Medicina Tropical
T +351 213 652 630
T +351 213 652 690
T +351 91 182 37 48
T +351 91 182 44 67
medicina.viagens@ihmt.unl.pt

Ensino
Investigação
Medicina Tropical
Cooperação

Siga-nos

  • Facebook
  • LinkedIn
  • YouTube

Receber a “newsletter”

© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013