• Skip to primary navigation
  • Skip to main content
  • Skip to footer
  • Pessoal
    • Webmail
    • Área de Docentes
    • Área de Não-Docentes
  • Estudantes
    • Webmail
    • Moodle
    • NetP@
    • Biblioteca
    • Escola Doutoral
    • Serviços Académicos
    • Trabalhar no IHMT

IHMT

Instituto de Higiene e Medicina Tropical

  • O Instituto
    • Missão
    • História
    • Mensagem do Diretor
    • Órgãos de governo
    • Docentes e investigadores
    • Unidades de Ensino e de Investigação
  • Ensino
    • Doutoramentos
    • Mestrados
    • Cursos de Especialização
    • Formação transversal
    • Cursos de Curta Duração
    • Ensino à Distância
    • Apoio ao Desenvolvimento
    • Serviços académicos
  • Investigação
    • Centro GHTM
    • Unidade de Clínica Tropical
    • Unidade de Microbiologia Médica
    • Unidade de Parasitologia Médica
    • Unidade de Saúde Pública Global
    • Serviço de Interesse Comum
    • Biobanco
    • Centro Colaborador da OMS
    • Publicações
  • Serviços e gestão
    • Biblioteca
    • Sistema de Qualidade
    • Estatutos e regulamentos
    • Relatórios
    • Contratos públicos
    • Recursos humanos
      • Concursos e bolsas
      • Contratos
      • Avaliação e Desempenho
        • Processo Eleitoral da Comissão Paritária
      • Mobilidade
  • Doenças Tropicais
    • Consulta do Viajante
    • Glossário
    • Museu
    • Vídeos
    • MosquitoWeb
  • Comunidade
    • Cooperação e Desenvolvimento
    • Formação
    • Parcerias
  • Contactos
  • Português
  • English
Home / Publicações / Proteomic changes in HEK-293 cells induced by hepatitis delta virus replication

Proteomic changes in HEK-293 cells induced by hepatitis delta virus replication

  • Autores: Coelho AV, Cunha C, Mendes M, Pérez-Hernandez D, Vázquez J
  • Ano de Publicação: 2013
  • Journal: Journal of Proteomics
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/23770296

Hepatitis delta virus (HDV) infection greatly increases the risk of hepatocellular carcinoma in hepatitis B virus chronically infected patients. HDV is highly dependent on host factors for accomplishment of the replication cycle. However, these factors are largely unknown and the mechanisms involved in the pathogenicity of the virus still remain elusive.

Here, we made use of the HEK-293 cell line, which was engineered in order to mimic HDV replication. Five different proteomes were analyzed and compared using a MS-based quantitative proteomics approach by (18)O/(16)O stable isotope labeling. About 3000 proteins were quantified and 89 found to be differentially expressed as a consequence HDV RNA replication.

The down-regulation of p53 , HSPE, and ELAV as well as the up-regulation of Transportin 1 , EIF3D, and Cofilin 1 were validated by Western blot. A systems biology approach was additionally used to analyze altered pathways and networks. The G2/M DNA damage checkpoint and pyruvate metabolism were among the most affected pathways, and Cancer was the most likely disease associated to HDV replication.

Western blot analysis allowed identifying 14-3-3 σ interactor as down-regulated protein acting in the G2/M cell cycle control checkpoint. This evidence supports deregulation of G2/M checkpoint as a possible mechanism involved in the promotion of HDV associated hepatocellular carcinoma.

Proteomic changes in HEK-293 cells induced by hepatitis delta virus replication

  • Autores: Coelho AV, Cunha C, Mendes M, Pérez-Hernandez D, Vázquez J
  • Ano de Publicação: 2013
  • Journal: Journal of Proteomics
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/23770296

Hepatitis delta virus (HDV) infection greatly increases the risk of hepatocellular carcinoma in hepatitis B virus chronically infected patients. HDV is highly dependent on host factors for accomplishment of the replication cycle. However, these factors are largely unknown and the mechanisms involved in the pathogenicity of the virus still remain elusive.

Here, we made use of the HEK-293 cell line, which was engineered in order to mimic HDV replication. Five different proteomes were analyzed and compared using a MS-based quantitative proteomics approach by (18)O/(16)O stable isotope labeling. About 3000 proteins were quantified and 89 found to be differentially expressed as a consequence HDV RNA replication.

The down-regulation of p53 , HSPE, and ELAV as well as the up-regulation of Transportin 1 , EIF3D, and Cofilin 1 were validated by Western blot. A systems biology approach was additionally used to analyze altered pathways and networks. The G2/M DNA damage checkpoint and pyruvate metabolism were among the most affected pathways, and Cancer was the most likely disease associated to HDV replication.

Western blot analysis allowed identifying 14-3-3 σ interactor as down-regulated protein acting in the G2/M cell cycle control checkpoint. This evidence supports deregulation of G2/M checkpoint as a possible mechanism involved in the promotion of HDV associated hepatocellular carcinoma.

Footer

INSTITUTO DE HIGIENE E
MEDICINA TROPICAL
UNIVERSIDADE NOVA DE LISBOA
Rua da Junqueira, 100 1349-008 Lisboa
T +351 213 652 600
geral@ihmt.unl.pt

Consulta do Viajante e Medicina Tropical
T +351 213 652 630
T +351 213 652 690
T +351 91 182 37 48
T +351 91 182 44 67
medicina.viagens@ihmt.unl.pt

Ensino
Investigação
Medicina Tropical
Cooperação

Siga-nos

  • Facebook
  • LinkedIn
  • YouTube

Receber a “newsletter”

© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013