• Skip to primary navigation
  • Skip to main content
  • Skip to footer
  • Pessoal
    • Webmail
    • Área de Docentes
    • Área de Não-Docentes
  • Estudantes
    • Webmail
    • Moodle
    • NetP@
    • Biblioteca
    • Escola Doutoral
    • Serviços Académicos
    • Trabalhar no IHMT

IHMT

Instituto de Higiene e Medicina Tropical

  • O Instituto
    • Missão
    • História
    • Mensagem do Diretor
    • Órgãos de governo
    • Docentes e investigadores
    • Unidades de Ensino e de Investigação
  • Ensino
    • Doutoramentos
    • Mestrados
    • Cursos de Especialização
    • Formação transversal
    • Cursos de Curta Duração
    • Ensino à Distância
    • Apoio ao Desenvolvimento
    • Serviços académicos
  • Investigação
    • Centro GHTM
    • Unidade de Clínica Tropical
    • Unidade de Microbiologia Médica
    • Unidade de Parasitologia Médica
    • Unidade de Saúde Pública Global
    • Serviço de Interesse Comum
    • Biobanco
    • Centro Colaborador da OMS
    • Publicações
  • Serviços e gestão
    • Biblioteca
    • Sistema de Qualidade
    • Estatutos e regulamentos
    • Relatórios
    • Contratos públicos
    • Recursos humanos
      • Concursos e bolsas
      • Contratos
      • Avaliação e Desempenho
        • Processo Eleitoral da Comissão Paritária
      • Mobilidade
  • Doenças Tropicais
    • Consulta do Viajante
    • Glossário
    • Museu
    • Vídeos
    • MosquitoWeb
  • Comunidade
    • Cooperação e Desenvolvimento
    • Formação
    • Parcerias
  • Contactos
  • Português
  • English
Home / Publicações / Novel multiregion hybridization assay for the identification of the most prevalent genetic forms of the human immunodeficiency virus type 1 circulating in Portugal

Novel multiregion hybridization assay for the identification of the most prevalent genetic forms of the human immunodeficiency virus type 1 circulating in Portugal

  • Autores: Esteves A, Freitas FB, Parreira R, Piedade J
  • Ano de Publicação: 2013
  • Journal: AIDS Research and Human Retroviruses
  • Link: http://online.liebertpub.com/doi/abs/10.1089/aid.2012.0025

The most efficient method for HIV-1 genetic characterization involves full-genome sequencing, but the associated costs, technical features, and low throughput preclude it from being routinely used for the analysis of large numbers of viral strains. Multiregion hybridization assays (MHA) represent an alternative for a consistent genetic analysis of large numbers of viral strains. Classically, MHA rely on the amplification by real-time PCR of several regions scattered along the HIV-1 genome, and on their characterization with clade-specific TaqMan probes (also known as hydrolysis probes). In this context, the aim of our study was the development of a technical variant of an MHA (vMHAB/G/02) for genotyping the most prevalent genetic forms of HIV-1 circulating in Portugal. Different sets of primers were designed for universal and clade-specific amplifications of several sections of the viral genome: gag, pol(Pr), pol(RT), vpu, env(gp120), and env(gp41). vMHAB/G/02 was implemented using a real-time PCR-based approach, with detection dependent on the use of SYBR Green I. As an alternative, a technically less demanding strategy based on conventional PCR and agarose gel analysis of the reaction products was also developed. This method performed with overall good sensitivity and specificity (>91%) when a convenience sample of 45 plasma-derived HIV-1 strains was analyzed. Apart from the detection of subtype B, G, CRF02_AG, and CRF14_BG viruses, several unique B/G recombinant were also detected. Curiously, recombinant viruses including CRF02_AG sequences were not detected in the group of samples analyzed.

Novel multiregion hybridization assay for the identification of the most prevalent genetic forms of the human immunodeficiency virus type 1 circulating in Portugal

  • Autores: Esteves A, Freitas FB, Parreira R, Piedade J
  • Ano de Publicação: 2013
  • Journal: AIDS Research and Human Retroviruses
  • Link: http://online.liebertpub.com/doi/abs/10.1089/aid.2012.0025

The most efficient method for HIV-1 genetic characterization involves full-genome sequencing, but the associated costs, technical features, and low throughput preclude it from being routinely used for the analysis of large numbers of viral strains. Multiregion hybridization assays (MHA) represent an alternative for a consistent genetic analysis of large numbers of viral strains. Classically, MHA rely on the amplification by real-time PCR of several regions scattered along the HIV-1 genome, and on their characterization with clade-specific TaqMan probes (also known as hydrolysis probes). In this context, the aim of our study was the development of a technical variant of an MHA (vMHAB/G/02) for genotyping the most prevalent genetic forms of HIV-1 circulating in Portugal. Different sets of primers were designed for universal and clade-specific amplifications of several sections of the viral genome: gag, pol(Pr), pol(RT), vpu, env(gp120), and env(gp41). vMHAB/G/02 was implemented using a real-time PCR-based approach, with detection dependent on the use of SYBR Green I. As an alternative, a technically less demanding strategy based on conventional PCR and agarose gel analysis of the reaction products was also developed. This method performed with overall good sensitivity and specificity (>91%) when a convenience sample of 45 plasma-derived HIV-1 strains was analyzed. Apart from the detection of subtype B, G, CRF02_AG, and CRF14_BG viruses, several unique B/G recombinant were also detected. Curiously, recombinant viruses including CRF02_AG sequences were not detected in the group of samples analyzed.

Footer

INSTITUTO DE HIGIENE E
MEDICINA TROPICAL
UNIVERSIDADE NOVA DE LISBOA
Rua da Junqueira, 100 1349-008 Lisboa
T +351 213 652 600
geral@ihmt.unl.pt

Consulta do Viajante e Medicina Tropical
T +351 213 652 630
T +351 213 652 690
T +351 91 182 37 48
T +351 91 182 44 67
medicina.viagens@ihmt.unl.pt

Ensino
Investigação
Medicina Tropical
Cooperação

Siga-nos

  • Facebook
  • LinkedIn
  • YouTube

Receber a “newsletter”

© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013