• Skip to primary navigation
  • Skip to main content
  • Skip to footer
  • Pessoal
    • Webmail
    • Área de Docentes
    • Área de Não-Docentes
  • Estudantes
    • Webmail
    • Moodle
    • NetP@
    • Biblioteca
    • Escola Doutoral
    • Serviços Académicos
    • Trabalhar no IHMT

IHMT

Instituto de Higiene e Medicina Tropical

  • O Instituto
    • Missão
    • História
    • Mensagem do Diretor
    • Órgãos de governo
    • Docentes e investigadores
    • Unidades de Ensino e de Investigação
  • Ensino
    • Doutoramentos
    • Mestrados
    • Cursos de Especialização
    • Formação transversal
    • Cursos de Curta Duração
    • Ensino à Distância
    • Apoio ao Desenvolvimento
    • Serviços académicos
  • Investigação
    • Centro GHTM
    • Unidade de Clínica Tropical
    • Unidade de Microbiologia Médica
    • Unidade de Parasitologia Médica
    • Unidade de Saúde Pública Global
    • Serviço de Interesse Comum
    • Biobanco
    • Centro Colaborador da OMS
    • Publicações
  • Serviços e gestão
    • Biblioteca
    • Sistema de Qualidade
    • Estatutos e regulamentos
    • Relatórios
    • Contratos públicos
    • Recursos humanos
      • Concursos e bolsas
      • Contratos
      • Avaliação e Desempenho
        • Processo Eleitoral da Comissão Paritária
      • Mobilidade
  • Doenças Tropicais
    • Consulta do Viajante
    • Glossário
    • Museu
    • Vídeos
    • MosquitoWeb
  • Comunidade
    • Cooperação e Desenvolvimento
    • Formação
    • Parcerias
  • Contactos
  • Português
  • English
Home / Archives for Torti C

Torti C

Comparison of HIV-1 Genotypic Resistance Test Interpretation Systems in Predicting Virological Outcomes Over Time

  • Autores: Assel M, Boucher CA, De Luca A, Fabbiani M, Frentz D, Incardona F, Libin P, Manca N, Müller V, O Nualláin B, Paredes R, Prosperi M, Quiros-Roldan E, Ruiz L, Sloot PM, Torti C, Van de Vijver DA, Van Laethem K, Vandamme AM, Zazzi M
  • Ano de Publicação: 2010
  • Journal: PLoS One
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/?term=Comparison+of+HIV-1+Genotypic+Resistance+Test+Interpretation+Systems+in+Predicting+Virological+Outcomes+Over+Time

BACKGROUND: Several decision support systems have been developed to interpret HIV-1 drug resistance genotyping results. This study compares the ability of the most commonly used systems (ANRS, Rega, and Stanford’s HIVdb) to predict virological outcome at 12, 24, and 48 weeks. METHODOLOGY/PRINCIPAL FINDINGS: Included were 3763 treatment-change episodes (TCEs) for which a HIV-1 genotype was […]
Ler mais

Declining prevalence of HIV-1 drug resistance in antiretroviral treatment-exposed individuals in Western Europe

  • Autores: Asboe D, Bansi L, Camacho R, Codoñer FM, De Luca A, Di Giambenedetto S, Dunn D, Fanti I, Ghisetti V, Kaiser R, Prosperi MCF, Sönnerborg A, Torti C, van de Vijver DC, Van Laethem K, Vandamme AM, Zazzi M
  • Ano de Publicação: 2013
  • Journal: Journal of Infectious Diseases
  • Link: http://jid.oxfordjournals.org/content/early/2013/01/11/infdis.jit017.abstract

HIV-1 drug resistance represents a major obstacle to infection and disease control. This retrospective study analyzes trends and determinants of resistance in antiretroviral treatment (ART)-exposed individuals across 7 countries in Europe. Of 20,323 cases, 80% carried at least one resistance mutation: these declined from 81% in 1997 to 71% in 2008. Predicted extensive 3-class resistance was rare (3.2% considering the cumulative genotype) and peaked at 4.5% in 2005, decreasing thereafter. The proportion of cases exhausting available drug options dropped from 32% in 2000 to 1% in 2008. Reduced risk of resistance over calendar years was confirmed by multivariable analysis.
Ler mais

HIV-1 fitness landscape models for indinavir treatment pressure using observed evolution in longitudinal sequence data are predictive for treatment failure

  • Autores: Beheydt G, Bruzzone B, Camacho RJ, De Luca A, Deforche K, Grossman Z, Imbrechts S, Incardona F, Libin P, Pironti A, Rhee SY, Ruiz L, Sangeda RZ, Shafer RW, Sönnerborg A, Theys K, Torti C, Van de Vijver DA, Van Laethem K, Van Wijngaerden E, Vandamme AM, Vercauteren J, Zazzi M
  • Ano de Publicação: 2013
  • Journal: Infection Genetics and Evolution
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/23523594

We previously modeled the in vivo evolution of human immunodeficiency virus-1 (HIV-1) under drug selective pressure from cross-sectional viral sequences. These fitness landscapes (FLs) were made by using first a Bayesian network (BN) to map epistatic substitutions, followed by scaling the fitness landscape based on an HIV evolution simulator trying to evolve the sequences from treatment naïve patients into sequences from patients failing treatment.
Ler mais

RegaDB: Community-driven data management and analysis for infectious diseases

  • Autores: Alcantara LCJ, Assel M, Ayouba A, Beheydt G, Boucher C, Camacho RJ, Carvalho AP, Cavaco-Silva J, De Bel A, De Munter P, De Oliveira T, Deforche K, Ferreira F, Grossman Z, Imbrechts S, Kaiser R, Lacor P, Lapadula G, Libin P, Otelea D, Paraschiv S, Peeters M, Ruelle J, Sloot P, Snoeck J, Theys K, Torti C, Van Laethem K, Van Wijngaerden E, Vandamme AM, Wesner S, Zazzi M
  • Ano de Publicação: 2013
  • Journal: Bioinformatics
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/23645815

RegaDB is a free and open source data management and analysis environment for infectious diseases. RegaDB allows clinicians to store, manage and analyse patient data, including viral genetic sequences. Moreover, RegaDB provides researchers with a mechanism to collect data in a uniform format and offers them a canvas to make newly developed bioinformatics tools available to clinicians and virologists through a user friendly interface.
Ler mais

Superinfection with drug-resistant HIV is rare and does not contribute substantially to therapy failure in a large European cohort

  • Autores: Abecasis AB, Assel M, Bartha I, Luca AD, Müller V, Paredes R, Rosi A, Schülter E, Sloot PMA, Sönner-borg A, Svärd J, Torti C, van de Vijver DC, Van Laethem K, Vandamme AM, Zazzi M
  • Ano de Publicação: 2013
  • Journal: Bmc Infectious Diseases
  • Link: http://www.biomedcentral.com/1471-2334/13/537/

Superinfection with drug resistant HIV strains could potentially contribute to compromised therapy in patients initially infected with drug-sensitive virus and receiving antiretroviral therapy. To investigate the importance of this potential route to drug resistance, we developed a bioinformatics pipeline to detect superinfection from routinely collected genotyping data, and assessed whether superinfection contributed to increased drug resistance in a large European cohort of viremic, drug treated patients.
Ler mais

Clinical Evaluation of Rega 8: An Updated Genotypic Interpretation System That Significantly Predicts HIV-Therapy Response

  • Autores: Beheydt G, Camacho R, Clotet B, De Luca A, Geretti AM, Grossman Z, Imbrechts S, Kaiser R, Libin P, Prosperi M, Schmit JC, Sönnerborg A, Torti C, Van Laethem K, Van Wijngaerden E, Vandamme AM, Vercauteren J, Zazzi M
  • Ano de Publicação: 2013
  • Journal: PLoS One
  • Link: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061436

Clinically evaluating genotypic interpretation systems is essential to provide optimal guidance in designing potent individualized HIV-regimens. This study aimed at investigating the ability of the latest Rega algorithm to predict virological response on a short and longer period.
Ler mais

HIV-1 subtype is an independent predictor of reverse transcriptase mutation k65r in HIV-1 patients treated with combination antiretroviral therapy including tenofovir

  • Autores: Abecasis AB, Camacho RJ, Clotet B, De Luca A, Grossman Z, Schülter E, Snoeck J, Sönnerborg A, Struck D, Theys K, Torti C, Vandamme AM, Vercauteren J, Zazzi M
  • Ano de Publicação: 2013
  • Journal: Antimicrobial Agents and Chemotherapy
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/23183438

Subtype-dependent selection of HIV-1 reverse transcriptase resistance mutation K65R was previously observed in cell culture and small clinical investigations. We compared K65R prevalence across subtypes A, B, C, F, G, and CRF02_AG separately in a cohort of 3,076 patients on combination therapy including tenofovir. K65R selection was significantly higher in HIV-1 subtype C. This could not be explained by clinical and demographic factors in multivariate analysis, suggesting subtype sequence-specific K65R pathways.
Ler mais

Footer

INSTITUTO DE HIGIENE E
MEDICINA TROPICAL
UNIVERSIDADE NOVA DE LISBOA
Rua da Junqueira, 100 1349-008 Lisboa
T +351 213 652 600
geral@ihmt.unl.pt

Consulta do Viajante e Medicina Tropical
T +351 213 652 630
T +351 213 652 690
T +351 91 182 37 48
T +351 91 182 44 67
medicina.viagens@ihmt.unl.pt

Ensino
Investigação
Medicina Tropical
Cooperação

Siga-nos

  • Facebook
  • LinkedIn
  • YouTube

Receber a “newsletter”

© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013